1,561 research outputs found

    Mirage Cosmology on Unstable D3-Brane Universe

    Full text link
    We study the geodesic motion of an unstable brane moving in a higher dimensional bulk spacetime. The tachyon which is coupled to a U(1) gauge field induces a non-trivial cosmological evolution. Interestingly enough, this system exhibits a much smoother initial cosmological singularity in comparison with former works.Comment: 6 pages. Talk at the RTN conference ``The Quest for Unification: Theory Confronts Experiment", Corfu, Greece, Sept, 11-18, 200

    Brane Boxes, Anomalies, Bending and Tadpoles

    Get PDF
    Certain classes of chiral four-dimensional gauge theories may be obtained as the worldvolume theories of D5-branes suspended between networks of NS5-branes, the so-called brane box models. In this paper, we derive the stringy consistency conditions placed on these models, and show that they are equivalent to anomaly cancellation of the gauge theories. We derive these conditions in the orbifold theories which are T-dual to the elliptic brane box models. Specifically, we show that the expression for tadpoles for unphysical twisted Ramond-Ramond 4-form fields in the orbifold theory are proportional to the gauge anomalies of the brane box theory. Thus string consistency is equivalent to worldvolume gauge anomaly cancellation. Furthermore, we find additional cylinder amplitudes which give the β\beta-functions of the gauge theory. We show how these correspond to bending of the NS-branes in the brane box theory.Comment: 14 pages, 3 epsf figures. Minor changes, references adde

    Momentum Distributions in ttˉt\bar t

    Full text link
    We apply the Green function formalism for ttˉt-\bar t production and decay near threshold in a study of the effects due to the momentum dependent width for such a system. We point out that these effects are likely to be much smaller than expected from the reduction of the available phase space. The Lippmann--Schwinger equation for the QCD chromostatic potential is solved numerically for SS partial wave. We compare the results on the total cross section, top quark intrinsic momentum distributions and on the energy spectra of WW bosons from top quark decays with those obtained for the constant width.Comment: 12 pages (without figures) (11 (sub)figures available on request), Karlsruhe preprint TTP93-11, hep-ph/yymmnn

    Loop quantum gravity effects on inflation and the CMB

    Get PDF
    In loop quantum cosmology, the universe avoids a big bang singularity and undergoes an early and short super-inflation phase. During super-inflation, non-perturbative quantum corrections to the dynamics drive an inflaton field up its potential hill, thus setting the initial conditions for standard inflation. We show that this effect can raise the inflaton high enough to achieve sufficient e-foldings in the standard inflation era. We analyze the cosmological perturbations generated when slow-roll is violated after super-inflation, and show that loop quantum effects can in principle leave an indirect signature on the largest scales in the CMB, with some loss of power and running of the spectral index.Comment: revtex4, 5 pages, 3 figures, significant improvements in explanation of quantization and perturbation issues; version to appear Classical and Quantum Gravit

    On the connection between the pinch technique and the background field method

    Full text link
    The connection between the pinch technique and the background field method is further explored. We show by explicit calculations that the application of the pinch technique in the framework of the background field method gives rise to exactly the same results as in the linear renormalizable gauges. The general method for extending the pinch technique to the case of Green's functions with off-shell fermions as incoming particles is presented. As an example, the one-loop gauge independent quark self-energy is constructed. We briefly discuss the possibility that the gluonic Green's functions, obtained by either method, correspond to physical quantities.Comment: 13 pages and 3 figures, all included in a uuencoded file, to appear in Physical Review

    Cosmological evolution of scalar fields and gravitino dark matter in gauge mediation at low reheating temperatures

    Full text link
    We consider the dynamics of the supersymmetry-breaking scalar field and the production of dark matter gravitinos via its decay in a gauge-mediated supersymmetry breaking model with metastable vacuum. We find that the scalar field amplitude and gravitino density are extremely sensitive to the parameters of the hidden sector. For the case of an O'Raifeartaigh sector, we show that the observed dark matter density can be explained by gravitinos even for low reheating temperatures T_{R} < 10 GeV. Such low reheating temperatures may be implied by detection of the NLSP at the LHC if its thermal freeze-out density is in conflict with BBN.Comment: 11 pages RevTex. Extended discussion and minor corrections, conclusions unaltered. Version to be published in JCA

    Scene Coordinate Regression with Angle-Based Reprojection Loss for Camera Relocalization

    Get PDF
    Image-based camera relocalization is an important problem in computer vision and robotics. Recent works utilize convolutional neural networks (CNNs) to regress for pixels in a query image their corresponding 3D world coordinates in the scene. The final pose is then solved via a RANSAC-based optimization scheme using the predicted coordinates. Usually, the CNN is trained with ground truth scene coordinates, but it has also been shown that the network can discover 3D scene geometry automatically by minimizing single-view reprojection loss. However, due to the deficiencies of the reprojection loss, the network needs to be carefully initialized. In this paper, we present a new angle-based reprojection loss, which resolves the issues of the original reprojection loss. With this new loss function, the network can be trained without careful initialization, and the system achieves more accurate results. The new loss also enables us to utilize available multi-view constraints, which further improve performance.Comment: ECCV 2018 Workshop (Geometry Meets Deep Learning

    Mars Rover Sample Return: A sample collection and analysis strategy for exobiology

    Get PDF
    For reasons defined elsewhere it is reasonable to search for biological signatures, both chemical and morphological, of extinct life on Mars. Life on Earth requries the presence of liquid water, therefore, it is important to explore sites on Mars where standing bodies of water may have once existed. Outcrops of layered deposits within the Valles Marineris appear to be ancient lake beds. Because the outcrops are well exposed, relatively shallow core samples would be very informative. The most important biological signature to detect would be organics, microfossils, or larger stromato-like structures, although the presence of cherts, carbonates, clays, and shales would be significant. In spite of the limitations of current robotics and pattern recognition, and the limitations of rover power, computation, Earth communication bandwidth, and time delays, a partial scenario was developed to implement such a scientific investigation. The rover instrumentation and the procedures and decisions and IR spectrometer are described in detail. Preliminary results from a collaborative effort are described, which indicate the rover will be able to autonomously detect stratification, and hence will ease the interpretation burden and lead to greater scientific productivity during the rover's lifetime

    Hologrphy and holographic dark energy model

    Full text link
    The holographic principle is used to discuss the holographic dark energy model. We find that the Bekenstein-Hawking entropy bound is far from saturation under certain conditions. A more general constraint on the parameter of the holographic dark energy model is also derived.Comment: no figures, use revtex, v2: use iop style, some typos corrected and references updated, will appear in CQ

    Combinatorics of Boundaries in String Theory

    Get PDF
    We investigate the possibility that stringy nonperturbative effects appear as holes in the world-sheet. We focus on the case of Dirichlet string theory, which we argue should be formulated differently than in previous work, and we find that the effects of boundaries are naturally weighted by eO(1/gst)e^{-O(1/g_{\rm st})}.Comment: 12 pages, 2 figures, LaTe
    corecore